题目内容
【题目】已知,分别为双曲线的左、右焦点,点P是以为直径的圆与C在第一象限内的交点,若线段的中点Q在C的渐近线上,则C的两条渐近线方程为__________.
【答案】y=±2x
【解析】
求得双曲线的渐近线方程,由圆的性质可得PF1⊥PF2,由三角形的中位线定理可得PF1⊥OQ,OQ的方程设为bx+ay=0,运用点到直线的距离公式可得F1(﹣c,0)到OQ的距离,结合双曲线的定义可得b=2a,进而双曲线的渐近线方程.
双曲线的渐近线方程为y=±x,
点P是以F1F2为直径的圆与C在第一象限内的交点,可得PF1⊥PF2,
线段PF1的中点Q在C的渐近线,可得OQ∥PF2,
且PF1⊥OQ,OQ的方程设为bx+ay=0,
可得F1(﹣c,0)到OQ的距离为b,
即有|PF1|=2b,|PF2|=2|OQ|=2a,
由双曲线的定义可得|PF1|﹣|PF2|=2b﹣2a=2a,
即b=2a,
所以双曲线的渐近线方程为y=±2x.
故答案为:y=±2x.
【题目】某种水果按照果径大小可分为四类:标准果、优质果、精品果、礼品果.某采购商从采购的一批水果中随机抽取个,利用水果的等级分类标准得到的数据如下:
等级 | 标准果 | 优质果 | 精品果 | 礼品果 |
个数 | 10 | 30 | 40 | 20 |
(1)若将频率是为概率,从这个水果中有放回地随机抽取个,求恰好有个水果是礼品果的概率.(结果用分数表示)
(2)用样本估计总体,果园老板提出两种购销方案给采购商参考.
方案:不分类卖出,单价为元.
方案:分类卖出,分类后的水果售价如下:
等级 | 标准果 | 优质果 | 精品果 | 礼品果 |
售价(元/kg) | 16 | 18 | 22 | 24 |
从采购单的角度考虑,应该采用哪种方案?
(3)用分层抽样的方法从这个水果中抽取个,再从抽取的个水果中随机抽取个,表示抽取的是精品果的数量,求的分布列及数学期望.