题目内容

2.过点P(1,2)的直线l交x,y轴的正半轴与A、B两点,O为坐标原点,当|AB|最小时,直线l的方程为y-2=$\root{3}{2}$(x-1).

分析 如图所示,设∠OAB=α,α∈$(0,\frac{π}{2})$.可得|PA|=$\frac{2}{sinα}$,|PB|=$\frac{1}{cosα}$.|AB|=|PA|+|PB|=$\frac{2}{sinα}$+$\frac{1}{cosα}$=f(α),利用导数研究其单调性极值即可得出.

解答 解:如图所示,
设∠OAB=α,α∈$(0,\frac{π}{2})$.
则|PA|=$\frac{2}{sinα}$,|PB|=$\frac{1}{cosα}$.
∴|AB|=|PA|+|PB|=$\frac{2}{sinα}$+$\frac{1}{cosα}$=f(α),
f′(α)=$-\frac{2cosα}{si{n}^{2}α}$+$\frac{sinα}{co{s}^{2}α}$=$\frac{(sinα-\root{3}{2}cosα)(si{n}^{2}α+\root{3}{4}cosα+\root{3}{2}sinαcosα)}{si{n}^{2}αco{s}^{2}α}$,
当tanα>$\root{3}{2}$时,f′(α)>0,此时函数f(α)单调递增;当0<tanα<$\root{3}{2}$时,f′(α)<0,此时函数f(α)单调递减.
∴当tanα=$\root{3}{2}$时,函数f(α)取得最小值,
此时直线l的方程为:y-2=$\root{3}{2}$(x-1).
故答案为:y-2=$\root{3}{2}$(x-1).

点评 本题考查了利用导数研究函数单调性极值、直线的方程、三角函数的单调性,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网