题目内容
【题目】数列{an}中,a1=8,a4=2,且满足an+2-2an+1+an=0.
(1)求数列的通项公式;
(2)设Sn=|a1|+|a2|+…+|an|,求Sn.
【答案】(1)an=10-2n;(2).
【解析】试题分析:(1)首先判断数列{an}为等差数列,由a1=8,a4=2求出公差,代入通项公式即得.
(2)首先判断哪几项为非负数,哪些是负数,从而得出当n>5时,Sn=|a1|+|a2|+…+|an|=a1+a2+…+a5-(a6+a7+…+an)求出结果;当n≤5时,Sn=|a1|+|a2|+…+|an|=a1+a2+…+an当,再利用等差数列的前n项和公式求出答案.
试题解析:
(1)an+2-2an+1+an=0,
所以an+2-an+1=an+1-an,
所以{an+1-an}为常数列,
所以{an}是以a1为首项的等差数列.
设an=a1+(n-1)d,
则a4=a1+3d,
所以d==-2,
所以an=10-2n.
(2)因为an=10-2n,
令an=0,得n=5.
当n>5时,an<0;
当n=5时,an=0;
当n<5时,an>0.
令Tn=a1+a2+…+an,则Tn=-n2+9n.
所以当n>5时,
Sn=|a1|+|a2|+…+|an|
=a1+a2+…+a5-(a6+a7+…+an)
=T5-(Tn-T5)=2T5-Tn=n2-9n+40,
当n≤5时,
Sn=|a1|+|a2|+…+|an|
=a1+a2+…+an=Tn=9n-n2.
所以
【题目】为了加强中学生实践、创新和团队建设能力的培养,促进教育教学改革,市教育局举办了全市中学生创新知识竞赛,某中学举行了选拔赛,共有150名学生参加,为了了解成绩情况,从中抽取50名学生的成绩(得分均为整数,满分为100分)进行统计,请你根据尚未完成的频率分布表,解答下列问题:
(1)完成频率分布表(直接写出结果);
(2)若成绩在90.5分以上的学生获一等奖,试估计全校获一等奖的人数,现在从全校所有获一等奖的同学中随机抽取2名同学代表学校参加竞赛,某班共有2名同学荣获一等奖,求该班同学恰有1人参加竞赛的概率.
分组 | 频数 | 频率 | |
第1组 | [60.5,70.5) | 0.26 | |
第2组 | [70.5,80.5) | 17 | |
第3组 | [80.5,90.5) | 18 | 0.36 |
第4组 | [90.5,100.5] | ||
合计 | 50 | 1 |