题目内容

【题目】已知等差数列{an}的公差d>0,且a1a6=11,a3+a4=12.
(1)求数列{an}的通项公式;
(2)求数列{ }的前n项和Tn

【答案】
(1)解:∵a1a6=11,a3+a4=12=a1+a6

∴a1,a6是2x2﹣12x+11=0方程的两根,且a1<a6

解得a1=1,a6=11.

∴11﹣1=5d,即d=2,

∴an=2n﹣1.


(2)解: =

∴数列{ }的前n项和Tn= + +…+

=


【解析】(1)利用等差数列的通项公式及其性质、一元二次方程的根与系数的关系即可得出.(2)利用“累加求和”方法即可得出.
【考点精析】解答此题的关键在于理解数列的前n项和的相关知识,掌握数列{an}的前n项和sn与通项an的关系

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网