题目内容
(本小题满分12分) 如图,AB是⊙O的直径,PA垂直于⊙O所在的平面,C是圆周上不同于A,B的一点.
(1)证明:平面PAC⊥平面PBC;
(2)若
,∠ABC=30°,求二面角A—PB—C的大小.
(1)证明:平面PAC⊥平面PBC;
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231501297331536.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823150129764414.gif)
(1)平面PAC⊥平面PBC
(2)二面角A—PB—C的大小为60°
(2)二面角A—PB—C的大小为60°
(1)证明:∵PA垂直于⊙O所在的平面,BC在该平面内,所以PA⊥BC。
∵C是圆周上不同于A,B的一点,AB是⊙O的直径,所以∠BCA是直角,即BC⊥AC。
又因为PA与AC是平面PAC内的两条相交直线,所以BC⊥平面PAC。
又困为BC在平面PBC内,所以平面PAC⊥平面PBC …………………5分
(2)作AD⊥PB于D点,AE⊥PC于E点,连DE。
由(1)知平面PAC⊥平面PBC,所以AE⊥平面PBC
而PB在平面PBC内,所以AE⊥PB
即有PB⊥AD(所作)PB⊥AE,又AE与AD是平面ADE内的两条相交直线,
所以PB⊥平面ADE,所以∠ADE是二面角A—PB—C的平面角。…………………………9分
设AB=2r,在Rt△ABC中,∠ABC=30°,所以AC=r
由条件知PA=![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823150129811295.gif)
在Rt△PAC中,AE=![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231501298891034.gif)
在Rt△PAB中,AD=![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823150129967978.gif)
在Rt△AED中,sin∠ADE=
,所以∠ADE=60°
故二面角A—PB—C的大小为60°………………………………………12分
∵C是圆周上不同于A,B的一点,AB是⊙O的直径,所以∠BCA是直角,即BC⊥AC。
又因为PA与AC是平面PAC内的两条相交直线,所以BC⊥平面PAC。
又困为BC在平面PBC内,所以平面PAC⊥平面PBC …………………5分
(2)作AD⊥PB于D点,AE⊥PC于E点,连DE。
由(1)知平面PAC⊥平面PBC,所以AE⊥平面PBC
而PB在平面PBC内,所以AE⊥PB
即有PB⊥AD(所作)PB⊥AE,又AE与AD是平面ADE内的两条相交直线,
所以PB⊥平面ADE,所以∠ADE是二面角A—PB—C的平面角。…………………………9分
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231501297791719.gif)
由条件知PA=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823150129811295.gif)
在Rt△PAC中,AE=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231501298891034.gif)
在Rt△PAB中,AD=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823150129967978.gif)
在Rt△AED中,sin∠ADE=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823150129982555.gif)
故二面角A—PB—C的大小为60°………………………………………12分
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目