题目内容
(本小题满分15分)如图,斜三棱柱ABC—A1B1C1中,A1C1⊥BC1,AB⊥AC,AB=3,AC=2,侧棱与底面成60°角.
(1)求证:AC⊥面ABC1;
(2)求证:C1点在平面ABC上的射影H在直线AB上;
(3)求此三棱柱体积的最小值.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231450154685478.jpg)
(1)求证:AC⊥面ABC1;
(2)求证:C1点在平面ABC上的射影H在直线AB上;
(3)求此三棱柱体积的最小值.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231450154685478.jpg)
(1)由棱柱性质,可知A1C1//AC,∵A1C1
BC1,
∴AC
BC1,又∵AC
AB,∴AC
平面ABC1
(2)由(1)知AC
平面ABC1,又AC
平面ABC,∴平面ABC
平面ABC1,
在平面ABC1内,过C1作C1H
AB于H,则C1H
平面ABC,故点C1在平面ABC上
的射影H在直线AB上.
(3)3![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823145015718218.gif)
.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823145015515108.gif)
∴AC
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823145015515108.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823145015515108.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823145015515108.gif)
(2)由(1)知AC
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823145015515108.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823145015671103.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823145015515108.gif)
在平面ABC1内,过C1作C1H
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823145015515108.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823145015515108.gif)
的射影H在直线AB上.
(3)3
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823145015718218.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823145015733304.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231450157964490.jpg)
(1)由棱柱性质,可知A1C1//AC,∵A1C1
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823145015515108.gif)
∴AC
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823145015515108.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823145015515108.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823145015515108.gif)
(2)由(1)知AC
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823145015515108.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823145015671103.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823145015515108.gif)
在平面ABC1内,过C1作C1H
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823145015515108.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823145015515108.gif)
的射影H在直线AB上.
(3)连结HC,由(2)知C1H
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823145015515108.gif)
∴∠C1CH=60°,C1H=CH·tan60°=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823145015983293.gif)
V棱柱=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231450160451116.gif)
∵CA
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823145015515108.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823145016264262.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823145015718218.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823145015733304.gif)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目