题目内容
【题目】已知是圆外一点,过点作圆的切线,切点为,记四边形的面积为,当在圆上运动时, 的取值范围为( )
A. B. C. D.
【答案】A
【解析】
由题意得到圆心,半径;圆心,半径, , ,当位于图形中的位置时,四边形面积最小,过作圆的切线,切点分别为,连接,可得出,且,则中,根据勾股定理得: ,此时,当位于图形中的位置时,四边形面积最大,同理得到,综上, 的范围为,故选A.
【方法点晴】本题主要考查圆的方程、直线与圆的位置关系以及求取值范围问题,属于难题.解决圆解析几何中的取值范围问题一般有两种方法:一是几何意义,特别是用圆锥曲线的定义和平面几何的有关结论来解决,非常巧妙;二是将圆解析几何中取值范围问题转化为函数问题,然后根据函数的特征选用参数法、配方法、判别式法、三角函数有界法、函数单调性法以及均值不等式法,本题利用圆的几何性质求三角形面积最值的.
练习册系列答案
相关题目
【题目】某种产品的广告费支出 (百万元)与销售额 (百万元)之间有如下对应数据:
2 | 4 | 5 | 6 | 8 | |
30 | 40 | 50 | 60 | 70 |
如果与之间具有线性相关关系.
(1)作出这些数据的散点图;
(2)求这些数据的线性回归方程;
(3)预测当广告费支出为9百万元时的销售额。 ( 参考数据: )
【题目】假设某种设备使用的年限x(年)与所支出的维修费用y(万元)有以下统计资料:
使用年限x | 2 | 3 | 4 | 5 | 6 |
维修费用y | 2 | 4 | 5 | 6 | 7 |
若由资料知y对x呈线性相关关系。试求:
(1)求; (2)线性回归方程;
(3)估计使用10年时,维修费用是多少?
附:利用“最小二乘法”计算a,b的值时,可根据以下公式: