题目内容

【题目】已知是圆外一点,过点作圆的切线,切点为,记四边形的面积为,当在圆上运动时, 的取值范围为(

A. B. C. D.

【答案】A

【解析】

由题意得到圆心半径圆心半径 位于图形中的位置时,四边形面积最小,过作圆的切线切点分别为连接可得出根据勾股定理得: 此时位于图形中的位置时,四边形面积最大,同理得到,综上, 的范围为,故选A.

【方法点晴】本题主要考查圆的方程、直线与圆的位置关系以及求取值范围问题,属于难题.解决圆解析几何中的取值范围问题一般有两种方法:一是几何意义,特别是用圆锥曲线的定义和平面几何的有关结论来解决,非常巧妙;二是将圆解析几何中取值范围问题转化为函数问题,然后根据函数的特征选用参数法、配方法、判别式法、三角函数有界法、函数单调性法以及均值不等式法,本题利用圆的几何性质求三角形面积最值的.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网