题目内容
【题目】如图,设P是圆上的动点,点D是P在x轴上的投影,M为线段PD上一点,且,
(1)当P在圆上运动时,求点M的轨迹C的方程;
(2)求过点(3,0)且斜率为的直线被轨迹C所截线段的长度.
【答案】(Ⅰ);(Ⅱ)。
【解析】试题分析:(Ⅰ)由题意P是圆上的动点,点D是P在x轴上的射影,M为PD上一点,且,利用相关点法即可求轨迹;(Ⅱ)由题意写出直线方程与曲线C的方程进行联立,利用根与系数的关系得到线段长度
试题解析:(Ⅰ)设M的坐标为(x,y)P的坐标为(xp,yp)
由已知 xp=x,
∵P在圆上, ∴,即C的方程为
(Ⅱ)过点(3,0)且斜率为的直线方程为,
设直线与C的交点为
将直线方程代入C的方程,得
即
∴∴线段AB的长度为
【题目】“一带一路”国际合作高峰论坛圆满落幕了,相关话题在网络上引起了网友们的高度关注,为此,21财经APP联合UC推出“一带一路”大数据微报告,在全国抽取的70千万网民中(其中为高学历)有20千万人对此关注(其中为高学历).
(1)根据以上统计数据填下面列联表;
(2)根据列联表,用独立性检验的方法分析,能否有的把握认为“一带一路”的关注度与学历有关系?
高学历(千万人) | 不是高学历(千万人) | 合计 | |
关注 | |||
不关注 | |||
合计 |
参考公式: 统计量的表达式是,
【题目】4月16日摩拜单车进驻大连市旅顺口区,绿色出行引领时尚,旅顺口区对市民进行“经常使用共享单车与年龄关系”的调查统计,若将单车用户按照年龄分为“年轻人”(20岁~39岁)和“非年轻人”(19岁及以下或者40岁及以上)两类,抽取一个容量为200的样本,将一周内使用的次数为6次或6次以上的称为“经常使用单车用户”。使用次数为5次或不足5次的称为“不常使用单车用户”,已知“经常使用单车用户”有120人,其中是“年轻人”,已知“不常使用单车用户”中有是“年轻人”.
(1)请你根据已知的数据,填写下列列联表:
年轻人 | 非年轻人 | 合计 | |
经常使用单车用户 | |||
不常使用单车用户 | |||
合计 |
(2)请根据(1)中的列联表,计算值并判断能否有的把握认为经常使用共享单车与年龄有关?
(附:
当时,有的把握说事件与有关;当时,有的把握说事件与有关;当时,认为事件与是无关的)
【题目】已知函数的定义域为,部分对应值如下表,又知的导函数的图象如下图所示:
0 | 4 | 5 | ||
1 | 2 | 2 | 1 |
则下列关于的命题:
①函数的极大值点为2;
②函数在上是减函数;
③如果当时, 的最大值是2,那么的最大值为4;
④当,函数有4个零点.
其中正确命题的序号是__________.