题目内容
【题目】选修4-4:坐标系与参数方程
已知直线的参数方程为(, 为参数),曲线的极坐标方程为.
(1)将曲线的极坐标方程化为直坐标方程,并说明曲线的形状;
(2)若直线经过点,求直线被曲线截得的线段的长.
【答案】(1)详见解析;(2)8.
【解析】试题分析:(1)将曲线的极坐标方程为两边同时乘以,利用极坐标与直角坐标之间的关系即可得出其直角坐标方程;(2)由直线经过点,可得的值,再将直线的参数方程代入曲线的标准方程,由直线参数方程的几何意义可得直线被曲线截得的线段的长.
试题解析:(1)由可得,即,
∴ 曲线表示的是焦点为,准线为的抛物线.
(2)将代入,得,∴ ,
∵,∴ ,∴直线的参数方程为 (为参数).
将直线的参数方程代入得,
由直线参数方程的几何意义可知,
.
练习册系列答案
相关题目
【题目】从某小区随机抽取40个家庭,收集了这40个家庭去年的月均用水量(单位:吨)的数据,整理得到频数分布表和频率分布直方图.
分组 | 频数 |
[2,4) | 2 |
[4,6) | 10 |
[6,8) | 16 |
[8,10) | 8 |
[10,12] | 4 |
合计 | 40 |
(1)求频率分布直方图中a,b的值;
(2)从该小区随机选取一个家庭,试估计这个家庭去年的月均用水量不低于6吨的概率;
(3)在这40个家庭中,用分层抽样的方法从月均用水量不低于6吨的家庭里抽取一个容量为7的样本,将该样本看成一个总体,从中任意选取2个家庭,求其中恰有一个家庭的月均用水量不低于8吨的概率.