题目内容
已知数列{an}的各项均为正数,观察程序框图,若k=5,k=10时,分别有S=
和S=
(1)试求数列{an}的通项;
(2)令bn=2an,求b1+b2+…+bm的值.
5 |
11 |
10 |
21 |
(1)试求数列{an}的通项;
(2)令bn=2an,求b1+b2+…+bm的值.
(1)由框图可知
S=
+
+…+
∵ai+1=ai+d,∴{an}是等差数列,设公差为d,则有
=
(
-
)
∴S=
(
-
+
-
+…+
-
)=
(
-
),
由题意可知,k=5时,S=
;k=10时,S=
∴
得
或
(舍去)
故an=a1+(n-1)d=2n-1
(2)由(1)可得:bn=2an=22n-1
∴b1+b2++bm=21+23++22m-1
=
=
(4m-1)
S=
1 |
a1a2 |
1 |
a2a3 |
1 |
akak+1 |
∵ai+1=ai+d,∴{an}是等差数列,设公差为d,则有
1 |
akak+1 |
1 |
d |
1 |
ak |
1 |
ak+1 |
∴S=
1 |
d |
1 |
a1 |
1 |
a2 |
1 |
a2 |
1 |
a3 |
1 |
ak |
1 |
ak+1 |
1 |
d |
1 |
a1 |
1 |
ak+1 |
由题意可知,k=5时,S=
5 |
11 |
10 |
21 |
∴
|
|
|
故an=a1+(n-1)d=2n-1
(2)由(1)可得:bn=2an=22n-1
∴b1+b2++bm=21+23++22m-1
=
2(1-4m) |
1-4 |
=
2 |
3 |
练习册系列答案
相关题目