题目内容
如图,在三棱锥P—ABC中,∠APB=∠BPC=∠APC=90°,M在△ABC内,∠MPA=60°,∠MPB=45°,则∠MPC的度数为( )
A.30° | B.45° | C. 75° | D.60° |
D
分析:过M做平面PBC的垂线,交平面PBC于Q,连接PQ,由公式:cos∠MPB=cos∠MPQ×cos∠QPB,得到cos∠QPB=,从而可得cos∠QPC= ,再用公式:cos∠MPC=cos∠MPQ×cos∠QPC,即可求∠MPC.
解答:解:过M做平面PBC的垂线,交平面PBC于Q,连接PQ.
∵∠APB=∠APC=90°,∴AP⊥平面PBC,
∵MQ⊥平面PBC,∴AP∥MQ
∵∠MPA=60°,∴∠MPQ=90°-60°=30°.
由公式:cos∠MPB=cos∠MPQ×cos∠QPB,得到cos∠QPB=
∵∠QPC是∠QPB的余角,所以cos∠QPC=
再用公式:cos∠MPC=cos∠MPQ×cos∠QPC,得到cos∠MPC=
∴∠MPC=60°
故选C.
点评:本题考查空间角,考查学生分析解决问题的能力,利用好公式是关键.
解答:解:过M做平面PBC的垂线,交平面PBC于Q,连接PQ.
∵∠APB=∠APC=90°,∴AP⊥平面PBC,
∵MQ⊥平面PBC,∴AP∥MQ
∵∠MPA=60°,∴∠MPQ=90°-60°=30°.
由公式:cos∠MPB=cos∠MPQ×cos∠QPB,得到cos∠QPB=
∵∠QPC是∠QPB的余角,所以cos∠QPC=
再用公式:cos∠MPC=cos∠MPQ×cos∠QPC,得到cos∠MPC=
∴∠MPC=60°
故选C.
点评:本题考查空间角,考查学生分析解决问题的能力,利用好公式是关键.
练习册系列答案
相关题目