题目内容
15.如果方程x2+(m-1)x+m2-2=0的两个实根一个小于-1,另一个大于1,那么实数m的取值范围是( )A. | -$\sqrt{2}$<m<$\sqrt{2}$ | B. | -2<m<0 | C. | -2<m<1 | D. | 0<m<1 |
分析 令f(x)=x2+(m-1)x+m2-2,则由题意利用二次函数的性质求得实数m的取值范围.
解答 解:令f(x)=x2+(m-1)x+m2-2,则由题意可得$\left\{\begin{array}{l}{f(-1){=m}^{2}-m<0}\\{f(1){=m}^{2}+m-2<0}\end{array}\right.$,
求得 0<m<1,
故选:D.
点评 本题主要考查一元二次方程根的分布与系数的关系,二次函数的性质,体现了转化的数学思想,属于基础题.
练习册系列答案
相关题目
5.某学校为调查高三年学生的身高情况,按随机抽样的方法抽取80名学生,得到男生身高情况的频率分布直方图(图(1))和女生身高情况的频率分布直方图(图(2)).已知图(1)中身高在170~175cm的男生人数有16人.
(Ⅰ)试问在抽取的学生中,男、女生各有多少人?
(Ⅱ)根据频率分布直方图,完成下列的2×2列联表,并判断能有多大(百分几)的把握认为“身高与性别有关”?
(Ⅲ)在上述80名学生中,从身高在170~175cm之间的学生中按男、女性别分层抽样的方法,抽出5人,从这5人中选派3人当旗手,求3人中恰好有一名女生的概率.
参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
参考数据:
(Ⅰ)试问在抽取的学生中,男、女生各有多少人?
(Ⅱ)根据频率分布直方图,完成下列的2×2列联表,并判断能有多大(百分几)的把握认为“身高与性别有关”?
≥170cm | <170cm | 总计 | |
男生身高 | |||
女生身高 | |||
总计 |
参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
参考数据:
P(K2≥k0) | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 5.024 | 6.635 | 7.879 | 10.828 |
20.设集合P={1,2,3,4},Q={x|x2-x-2<0,x∈R},则P∩Q=( )
A. | {1,2} | B. | {3,4} | C. | {1} | D. | {-2,-1,0,1,2} |
4.a=${∫}_{0}^{2}$xdx,b=${∫}_{0}^{2}$exdx,c=${∫}_{0}^{2}$sinxdx,则a、b、c大小关系是( )
A. | a<c<b | B. | a<b<c | C. | c<b<a | D. | c<a<b |