题目内容
1.已知x,y满足约束条件$\left\{\begin{array}{l}{x+y-1≤0}\\{x-y-1≤0}\\{x≥0}\end{array}\right.$,则z=x+2y的最大值为2.分析 由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,把最优解的坐标代入目标函数得答案.
解答 解:由约束条件$\left\{\begin{array}{l}{x+y-1≤0}\\{x-y-1≤0}\\{x≥0}\end{array}\right.$作出可行域如图,
化目标函数z=x+2y为$y=-\frac{x}{2}+\frac{z}{2}$.
由图可知,当直线$y=-\frac{x}{2}+\frac{z}{2}$过C(0,1)时,直线在y轴上的截距最大,此时z有最大值为0+2×1=2.
故答案为:2.
点评 本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题.
练习册系列答案
相关题目
3.如果A为锐角,sin(π+A)=-$\frac{1}{2}$,那么cos(π-A)=( )
A. | -$\frac{1}{2}$ | B. | $\frac{1}{2}$ | C. | -$\frac{{\sqrt{3}}}{2}$ | D. | $\frac{{\sqrt{3}}}{2}$ |
16.已知正项数列{an}满足(n+1)an+12-nan2+an+1an=0,且a1=1,不等式“a1•a2+a2•a3+…+an•an+1≥m对任意n∈N*恒成立,则实数m的取值范围是( )
A. | (-∞,$\frac{1}{2}$] | B. | (-∞,$\frac{1}{2}$) | C. | (-∞,1] | D. | (-∞,1) |
6.已知A,B,C为△ABC的三个内角,命题p:A=B;命题q:sinA=sinB.则¬p是¬q的( )
A. | 充分不必要条件 | B. | 必要不充分条件 | ||
C. | 充分必要条件 | D. | 既不充分也不必要条件 |
13.已知函数f(x)=asin2x+btanx+1,且f(-3)=5,则f(π+3)=( )
A. | 3 | B. | 1 | C. | -1 | D. | -3 |
10.若函数f(x)=$\sqrt{3}$cos(2x+α)-sin(2x+α)的图象关于直线x=0对称,则α=( )
A. | α=kπ-$\frac{π}{3}$ (k∈Z) | B. | α=kπ-$\frac{π}{6}$ (k∈Z) | C. | α=kπ+$\frac{π}{3}$(k∈Z) | D. | α=kπ+$\frac{π}{6}$ (k∈Z) |