题目内容
【题目】已知函数.
(1)当时,求函数的单调区间;
(2)若函数有两个极值点,且,求证;
(3)设,对于任意时,总存在,使成立,求实数的取值范围.
【答案】(1)递增区间为和,递减区间为.(2)见解析(3)
【解析】分析:(1)求出,在定义域内,分别令求得的范围,可得函数增区间,求得的范围,可得函数的减区间;(2)在上有两个不等的实根,由韦达定理及对数的运算法则可得,只需利用导数证明即可;(3)只需成立即可.化简得,,所以在递增,,利用在上恒成立可得结果.
详解:(1)
时,,
令或,令,
所以的递增区间为和,递减区间为.
(2)由于有两个极值点,
则在上有两个不等的实根,
设,
所以
所以在上递减,所以即.
(3)由题意知:只需成立即可. 因为,
所以,因为,所以,而,
所以,所以在递增,
当时,.
所以在上恒成立,
令,则在上恒成立,
,又
当时,,在递减,当时,,
所以,所以;
当即时,
①即时,在上递增,
存在,使得,不合;
②即时,,在递减,
当时,,所以,
所以综上, 实数的取值范围为.
练习册系列答案
相关题目