题目内容
1.已知球的直径SC=4,A,B是该球球面上的两点,AB=2,∠ASC=∠BSC=45°,则棱锥S-ABC的体积为( )A. | $\frac{2\sqrt{3}}{3}$ | B. | $\frac{\sqrt{3}}{3}$ | C. | $\frac{5\sqrt{3}}{3}$ | D. | $\frac{4\sqrt{3}}{3}$ |
分析 证明SC⊥面ABO,利用VS-ABC=VC-OAB+VS-OAB,求出棱锥S-ABC的体积.
解答 解:∵AB=2,∴△OAB为正三角形.
又∵∠BSC=∠ASC=45°,且SC为直径,
∴△ASC与△BSC均为等腰直角三角形.
∴BO⊥SC,AO⊥SC.
又AO∩BO=O,∴SC⊥面ABO.
∴VS-ABC=VC-OAB+VS-OAB=$\frac{1}{3}$•S△OAB•(SO+OC)=$\frac{1}{3}$×$\frac{\sqrt{3}}{4}$×4×4=$\frac{4\sqrt{3}}{3}$,
故选:D.
点评 本题考查线面垂直,考查棱锥S-ABC的体积,考查学生分析解决问题的能力,属于中档题.
练习册系列答案
相关题目
12.函数f(x)=-2sin2x+2cos x的最小值和最大值分别是( )
A. | -2,2 | B. | -2,$\frac{5}{2}$ | C. | -$\frac{1}{2}$,2 | D. | -$\frac{5}{2}$,2 |
16.利用一球体毛坯切削后得到一个几何体,该几何体的三视图如图所示,若主视图和左视图都是直角边长为1的等腰直角三角形,则毛坯球体的体积最小应为( )
A. | $\frac{{\sqrt{2}π}}{3}$ | B. | $\frac{4π}{3}$ | C. | $\frac{\sqrt{3}π}{2}$ | D. | $\frac{8\sqrt{2}π}{3}$ |
10.在约束条件$\left\{\begin{array}{l}y≥x\\ y≤2x\\ x+y≤1\end{array}\right.$下,目标函数z=x+2y的最大值为$\frac{5}{3}$.
6.设f°(x)=cosx,f1(x)=f0′(x),f2(x)=f1′(x),…,fn(x)=f′n-1(x)(n∈N*),则f2011(x)=( )
A. | cosx | B. | -sinx | C. | -cosx | D. | sinx |