题目内容
【题目】已知Sn是正项数列{an}的前n项和,且满足a1=4,6Sn=an2+3an+λ(n∈N*,λ∈R),设bn=(n﹣μ)an,若b2是数列{bn}中唯一的最小项,则实数μ的取值范围是_____.
【答案】(,)
【解析】
先根据数列满足,,求出其通项公式,进而求出的通项公式,再结合是数列中唯一的最小项,即可求出实数的取值范围.
∵Sn是正项数列{an}的前n项和,且满足a1=4,6Sn=an2+3an+λ(n∈N*,λ∈R),
∴6×4=42+3×4+λλ=﹣4,
∴6Sn=an2+3an﹣4,①
6Sn﹣1=an﹣12+3an﹣1﹣4,②
①﹣②6an=an2+3an﹣4﹣(an﹣12+3an﹣1﹣4)(an+an﹣1)(an﹣an﹣1﹣3)=0,
∵an>0an﹣an﹣1﹣3=0数列{an}是首项为4,公差为3的等差数列,
∴an=4+3(n﹣1)=3n+1,
∴bn=(n﹣μ)an=(n﹣μ)(3n+1)=3n2+(1﹣3μ)n﹣μ;
∵b2是数列{bn}中唯一的最小项,
∴其对称轴∈(,).
故答案为:(,).
练习册系列答案
相关题目