题目内容
【题目】在△ABC中,a,b,c分别为内角A,B,C的对边,且2asinA=(2b-c)sinB+(2c-b)sinC..
(1)求角A的大小;
(2)若sinB+sinC=,试判断△ABC的形状.
【答案】(1);(2)等边三角形.
【解析】
(1)利用余弦定理表示出cosA,然后根据正弦定理化简已知的等式,整理后代入表示出的cosA中,化简后求出cosA的值,由A为三角形的内角,利用特殊角的三角函数值即可求出A的度数;
(2)由A为60°,利用三角形的内角和定理得到B+C的度数,用B表示出C,代入已知的sinB+sinC=中,利用两角和与差的正弦函数公式及特殊角的三角函数值化简,整理后再利用两角和与差的正弦函数公式及特殊角的三角函数值化为一个角的正弦函数,由B的范围,求出这个角的范围,利用特殊角的三角函数值求出B为60°,可得出三角形ABC三个角相等,都为60°,则三角形ABC为等边三角形.
(1)由2asinA=(2b-c)sinB+(2c-b)sinC,得2a2=(2b-c)b+(2c-b)c,即bc=b2+c2-a2,
∴cosA=,∴A=60°.
(2)∵A+B+C=180°,
∴B+C=180°-60°=120°,
由sinB+sinC=,得sinB+sin(120°-B)=,
∴sinB+sin120°cosB-cos120°sinB=,
∴sinB+cosB=,即sin(B+30°)=1,
∵0°<B<120°,∴30°<B+30°<150°,
∴B+30°=90°,B=60°,
∴A=B=C=60°,△ABC为等边三角形.
【题目】中央政府为了应对因人口老龄化而造成的劳动力短缺等问题,拟定出台“延迟退休年龄政策”.为了了解人们对“延迟退休年龄政策”的态度,责成人社部进行调研.人社部从网上年龄在15~65岁的人群中随机调查100人,调查数据的频率分布直方图如图所示, 支持“延迟退休年龄政策”的人数与年龄的统计结果如表:
年龄(岁) | |||||
支持“延迟退休年龄政策”人数 | 15 | 5 | 15 | 28 | 17 |
(I)由以上统计数据填写下面的列联表;
年龄低于45岁的人数 | 年龄不低于45岁的人数 | 总计 | |
支持 | |||
不支持 | |||
总计 |
(II)通过计算判断是否有的把握认为以45岁为分界点的不同人群对“延迟退休年龄政策”的态度有差异.
0.100 | 0.050 | 0.010 | 0.001 | |
2.706 | 3.841 | 6.635 | 10.828 |
参考公式: