题目内容
6.函数y=x${\;}^{\frac{2}{3}}$的定义域为[0,+∞),值域为[0,+∞).分析 直接利用幂函数的性质写出结果即可.
解答 解:函数y=x${\;}^{\frac{2}{3}}$的定义域为:[0,+∞),
函数的值域为:[0,+∞).
故答案为:[0,+∞);[0,+∞).
点评 本题考查幂函数的简单性质的应用,是基础题.
练习册系列答案
相关题目
17.函效y=f(x)的图象如图所示,则y=f(x)的解析式是( )
A. | f(x)=$\left\{\begin{array}{l}{1-x,x<1}\\{x-1,x≥1}\end{array}\right.$ | |
B. | f(x)=$\left\{\begin{array}{l}{-x-1,x<-1}\\{1+x,-1≤x<0}\\{1-x,0≤x≤1}\\{x-1,x>1}\end{array}\right.$ | |
C. | f(x)=$\left\{\begin{array}{l}{{x}^{2}-1,x>1或x<-1}\\{1-{x}^{2},-1≤x≤1}\end{array}\right.$ | |
D. | f(x)=$\left\{\begin{array}{l}{{x}^{2}+2x+1,x≤0}\\{{x}^{2}-2x+1,x>0}\end{array}\right.$ |