题目内容
【题目】已知函数的导函数的两个零点为和.
(1)求的单调区间;
(2)若的极小值为,求在区间上的最大值.
【答案】(1)单调递增区间是,单调递减区间是和;(2)最大值是.
【解析】
(1)求得,由题意可知和是函数的两个零点,根据函数的符号变化可得出的符号变化,进而可得出函数的单调递增区间和递减区间;
(2)由(1)中的结论知,函数的极小值为,进而得出,解出、、的值,然后利用导数可求得函数在区间上的最大值.
(1),
令,
因为,所以的零点就是的零点,且与符号相同.
又因为,所以当时,,即;当或时,,即.
所以,函数的单调递增区间是,单调递减区间是和;
(2)由(1)知,是的极小值点,
所以有,解得,, ,
所以.
因为函数的单调递增区间是,单调递减区间是和.
所以为函数的极大值,
故在区间上的最大值取和中的最大者,
而,所以函数在区间上的最大值是.
练习册系列答案
相关题目