题目内容
【题目】已知分别是椭圆的左焦点和右焦点,椭圆的离心率为是椭圆上两点,点满足.
(1)求的方程;
(2)若点在圆上,点为坐标原点,求的取值范围.
【答案】(1);(2).
【解析】
(1)根据焦点坐标和离心率,结合椭圆中的关系,即可求得的值,进而得椭圆的标准方程.
(2)设出直线的方程为,由题意可知为中点.联立直线与椭圆方程,由韦达定理表示出,由判别式可得;由平面向量的线性运算及数量积定义,化简可得,代入弦长公式化简;由中点坐标公式可得点的坐标,代入圆的方程,化简可得,代入数量积公式并化简,由换元法令,代入可得,再令及,结合函数单调性即可确定的取值范围,即确定的取值范围,因而可得的取值范围.
(1)分别是椭圆的左焦点和右焦点,
则,椭圆的离心率为
则解得,
所以,
所以的方程为.
(2)设直线的方程为,点满足,则为中点,点在圆上,设,
联立直线与椭圆方程,化简可得,
所以
则,化简可得,
而
由弦长公式代入可得
为中点,则
点在圆上,代入化简可得,
所以
令,则,,
令,则
令,则,
所以,
因为在内单调递增,所以,
即
所以
练习册系列答案
相关题目