题目内容
【题目】正方体中,是棱的中点,是侧面上的动点,且平面,记与的轨迹构成的平面为.
①,使得;
②直线与直线所成角的正切值的取值范围是;
③与平面所成锐二面角的正切值为;
④正方体的各个侧面中,与所成的锐二面角相等的侧面共四个.
其中正确命题的序号是________.(写出所有正确命题的序号)
【答案】①②③④
【解析】
取中点,中点,中点,先利用中位线的性质判断点的运动轨迹为线段,平面即为平面,画出图形,再依次判断:①利用等腰三角形的性质即可判断;②直线与直线所成角即为直线与直线所成角,设正方体的棱长为2,进而求解;③由,取为中点,则,则即为与平面所成的锐二面角,进而求解;④由平行的性质及图形判断即可.
取中点,连接,则,所以,所以平面即为平面,
取中点,中点,连接,则易证得,
所以平面平面,所以点的运动轨迹为线段,平面即为平面.
①取为中点,因为是等腰三角形,所以,又因为,所以,故①正确;
②直线与直线所成角即为直线与直线所成角,设正方体的棱长为2,当点为中点时,直线与直线所成角最小,此时,;
当点与点或点重合时,直线与直线所成角最大,此时,
所以直线与直线所成角的正切值的取值范围是,②正确;
③与平面的交线为,且,取为中点,则即为与平面所成的锐二面角,,所以③正确;
④正方体的各个侧面中,平面,平面,平面,平面与平面所成的角相等,所以④正确.
故答案为:①②③④
【题目】随着手机的发展,“微信”逐渐成为人们交流的一种形式.某机构对“使用微信交流”的态度进行调查,随机抽取了50人,他们年龄的频数分布及对“使用微信交流”赞成人数如下表.
年龄 (单位:岁) | [15,25) | [25,35) | [35,45) | [45,55) | [55,65) | [65,75] |
频数 | 5 | 10 | 15 | 10 | 5 | 5 |
赞成人数 | 5 | 10 | 12 | 7 | 2 | 1 |
(1)若以“年龄45岁为分界点”,由以上统计数据完成下面2×2列联表,并判断是否有99%的把握认为“使用微信交流”的态度与人的年龄有关;
年龄不低于45岁的人数 | 年龄低于45岁的人数 | 合计 | |
赞成 | |||
不赞成 | |||
合计 |
(2)若从年龄在[55,65)的被调查人中随机选取2人进行追踪调查,求2人中至少有1人不赞成“使用微信交流”的概率.
参考数据:
P(K2≥k0) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
K2=,其中n=a+b+c+d.