题目内容
1.设函数f(x)=|x+2|-|x-3|-a(Ⅰ)当a=1时,求函数f(x)的最大值;
(Ⅱ)若f(x)≤$\frac{4}{a}$对任意x∈R恒成立,求实数a的取值范围.
分析 (Ⅰ)运用绝对值不等式的性质,可得|x+2|-|x-3|≤|(x+2)-(x-3)|=5,即可得到f(x)的最大值;
(Ⅱ)f(x)≤$\frac{4}{a}$对任意x∈R恒成立,即为f(x)max=5-a≤$\frac{4}{a}$,解不等式可得a的范围.
解答 解:(Ⅰ)当a=1时,f(x)=|x+2|-|x-3|-1,
由|x+2|-|x-3|≤|(x+2)-(x-3)|=5,
故f(x)≤4,
所以,当x≥3时,f(x)取得最大值,且为4;
(Ⅱ)f(x)≤$\frac{4}{a}$对任意x∈R恒成立,即为f(x)max=5-a≤$\frac{4}{a}$,
即为$\left\{\begin{array}{l}{a>0}\\{{a}^{2}-5a+4≥0}\end{array}\right.$即有$\left\{\begin{array}{l}{a>0}\\{a≥4或a≤1}\end{array}\right.$,
即为a≥4或0<a≤1.
即有a的取值范围是(0,1]∪[4,+∞).
点评 本题考查绝对值不等式的性质和不等式恒成立问题的解法,同时考查运算能力,属于中档题.
练习册系列答案
相关题目
11.已知某保险公司每辆车的投保金额均为2800元,公司利用简单随机抽样的方法,对投保车辆进行抽样,样本中每辆车的赔付结果统计如下:
(1)试根据样本估计赔付金额大于投保金额的概率;
(2)保险公司在赔付金额为2000元、3000元和4000元的样本车辆中,发现车主是新司机的比例分别为1%、2%和4%,现从新司机中任取两人,则这两人的赔付金额之和不小于投保金额之和的概率是多少?
赔付金额(元) | 0 | 1000 | 2000 | 3000 | 4000 |
车辆数 | 500 | 150 | 200 | 100 | 50 |
(2)保险公司在赔付金额为2000元、3000元和4000元的样本车辆中,发现车主是新司机的比例分别为1%、2%和4%,现从新司机中任取两人,则这两人的赔付金额之和不小于投保金额之和的概率是多少?
6.$\int_{-1}^1{\sqrt{1-{x^2}}dx}$等于( )
A. | 1 | B. | $\frac{π}{4}$ | C. | $\frac{π}{2}$ | D. | π |
13.设复数z1=1+2i,z2=3-4i,则$\frac{z_1}{z_2}$在复平面内对应的点在( )
A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
10.若函数f(x)=x3+x2-2x-2的一个正数零点附近的函数值用二分法逐次计算,参考数据如下表:
那么方程x3+x2-2x-2=0的一个近似根可以为(精度为0.1)( )
f(1)=-2 | f(1.5)=0.625 |
f(1.25)=-0.984 | f(1.375)=-0.260 |
f(1.438)=0.165 | f(1.4065)=-0.052 |
A. | 1.2 | B. | 1.3 | C. | 1.43 | D. | 1.5 |
11.“a2>0”是“a>0”的( )
A. | 充分不必要条件 | B. | 必要不充分条件 | ||
C. | 充要条件 | D. | 既不充分也不必要条件 |