题目内容

【题目】记max{m,n}= ,设F(x,y)=max{|x2+2y+2|,|y2﹣2x+2|},其中x,y∈R,则F(x,y)的最小值是

【答案】1
【解析】解:∵|x2+2y+2|=|(x﹣1)2+2(x+y)+1|,|y2﹣2x+2|=|(y+1)2﹣2(x+y)+1|,
若x+y>0,则|(x﹣1)2+2(x+y)+1|>1,
则F(x,y)>1,
若x+y<0,则|(y+1)2﹣2(x+y)+1|>1,
则F(x,y)>1;
而当 ,即x=1,y=﹣1时,
F(x,y)=1,
故F(x,y)的最小值是1.
所以答案是:1.
【考点精析】关于本题考查的函数的最值及其几何意义,需要了解利用二次函数的性质(配方法)求函数的最大(小)值;利用图象求函数的最大(小)值;利用函数单调性的判断函数的最大(小)值才能得出正确答案.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网