题目内容
【题目】已知实数对(x,y),设映射f:(x,y)→( , ),并定义|(x,y)|= ,若|f[f(f(x,y))]|=4,则|(x,y)|的值为( )
A.4
B.8
C.16
D.32
【答案】B
【解析】解:∵映射f:(x,y)→( , ),∴|f[f(f(x,y))]|=f(f( , )=f( ),
∵定义|(x,y)|= ,若|f[f(f(x,y))]|=4,
∴|( )|=4,
∴ =4,
∴ =8 ,
故选B.
【考点精析】掌握映射的相关定义是解答本题的根本,需要知道对于映射f:A→B来说,则应满足:(1)集合A中的每一个元素,在集合B中都有象,并且象是唯一的;(2)集合A中不同的元素,在集合B中对应的象可以是同一个;(3)不要求集合B中的每一个元素在集合A中都有原象;注意:映射是针对自然界中的所有事物而言的,而函数仅仅是针对数字来说的.所以函数是映射,而映射不一定的函数.
练习册系列答案
相关题目
【题目】(12分)某同学参加3门课程的考试。假设该同学第一门课程取得优秀成绩的概率为,第二、第三门课程取得优秀成绩的概率分别为,(>),且不同课程是否取得优秀成绩相互独立。记ξ为该生取得优秀成绩的课程数,其分布列为
ξ | 0 | 1 | 2 | 3 |
(Ⅰ)求该生至少有1门课程取得优秀成绩的概率;
(Ⅱ)求,的值;
(Ⅲ)求数学期望ξ。