题目内容
22.(本小题满分10分)选修4—1:几何证明选讲
如图所示,AB为⊙O的直径,BC、CD为⊙O′的切线,B、D为切点
(1)求证:AD∥OC;
(2)若⊙O的半径为1,求AD·OC的值.
1)如图,连接BD、OD
∵CB、CD是⊙O的两条切线
∴BD⊥OC,∴∠2+∠3=90°
又AB为⊙O直径,∴AD⊥PB,∠1+∠2=90°
∴∠1=∠3,∴AD∥OC
(2)AO=OD,则∠1=∠A=∠3
∴Rt△BAD∽Rt△ODC,AD•••OC=AB•OD=2
∵CB、CD是⊙O的两条切线
∴BD⊥OC,∴∠2+∠3=90°
又AB为⊙O直径,∴AD⊥PB,∠1+∠2=90°
∴∠1=∠3,∴AD∥OC
(2)AO=OD,则∠1=∠A=∠3
∴Rt△BAD∽Rt△ODC,AD•••OC=AB•OD=2
略
练习册系列答案
相关题目