题目内容

【题目】《数书九章》三斜求积术:“以小斜幂,并大斜幂,减中斜幂,余半之,自乘于上;以小斜幂乘大斜幂,减上,余四约一,为实,一为从隅,开平方得积”.秦九韶把三角形的三条边分别称为小斜、中斜和大斜,“术”即方法.以 分别表示三角形的面积,大斜,中斜,小斜; 分别为对应的大斜,中斜,小斜上的高;则 .若在 ,根据上述公式,可以推出该三角形外接圆的半径为__________

【答案】

【解析】根据题意可知: ,故设,由 代入可得,由余弦定理可得cosA=,所以由正弦定理得三角形外接圆半径为

型】填空
束】
17

【题目】在等差数列中,已知公差 ,且 成等比数列.

(1)求数列的通项公式

(2)求.

【答案】(1);(2)100

【解析】试题分析:(1)根据题意 成等比数列得求出d即可得通项公式;(2)求项的绝对前n项和,首先分清数列有多少项正数项和负数项,然后正数项绝对值数值不变,负数项绝对值要变号,从而得,得,由,得,∴ 计算 即可得出结论

解析:(1)由题意可得,则

,即

化简得,解得(舍去).

.

(2)由(1)得时,

,得,由,得

.

.

练习册系列答案
相关题目

【题目】已知函数 .

(1)当时,讨论函数的单调性;

(2)当时,求证:函数有两个不相等的零点 ,且.

【答案】(1)见解析;(2)见解析

【解析】试题分析:(1)讨论函数单调区间即解导数大于零求得增区间,导数小于零求得减区间(2)函数有两个不同的零点,先分析函数单调性得零点所在的区间, 上单调递增,在上单调递减.∵ ,∴函数有两个不同的零点,且一个在内,另一个在内.

不妨设 ,要证,即证 上是增函数,故,且,即证. 由,得

,得上单调递减,∴,且∴ ,∴,即∴,故得证

解析:(1)当时, ,得

,得.

时, ,所以,故上单调递减;

时, ,所以,故上单调递增;

时, ,所以,故上单调递减;

所以 上单调递减,在上单调递增.

(2)证明:由题意得,其中

,由

所以上单调递增,在上单调递减.

∴函数有两个不同的零点,且一个在内,另一个在内.

不妨设

要证,即证

因为,且上是增函数,

所以,且,即证.

,得

.

,∴

时, ,即上单调递减,

,且∴

,即∴,故得证.

型】解答
束】
22

【题目】已知曲线的参数方程为为参数).以平面直角坐标系的原点为极点, 轴的正半轴为极轴,取相同的单位长度建立极坐标系,设直线的极坐标方程为.

(1)求曲线和直线的普通方程;

(2)设为曲线上任意一点,求点到直线的距离的最值.

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网