题目内容
【题目】一只药用昆虫的产卵数与一定范围内的温度有关,现收集了该种药用昆虫的组观测数据如下表:
温度 | ||||||
产卵数/个 |
经计算得: , , , , ,线性回归模型的残差平方和, ,其中, 分别为观测数据中的温差和产卵数, .
(1)若用线性回归方程,求关于的回归方程(精确到);
(2)若用非线性回归模型求得关于回归方程为,且相关指数.
(i)试与(1)中的回归模型相比,用说明哪种模型的拟合效果更好.
(ii)用拟合效果好的模型预测温度为时该种药用昆虫的产卵数(结果取整数).
附:一组数据, ,…, ,其回归直线的斜率和截距的最小二乘估计为, ;相关指数
【答案】(1)(2)(i)回归方程比线性回归方程拟合效果更好,(ii)当温度时,该种药用昆虫的产卵数估计为个
【解析】试题分析:(1)求出的值,计算相关系数,求出回归方程即可;(2)(i)根据相关指数的大小,即可比较模型拟合效果的优劣;(ii)代入求值计算即可.
试题解析:(1)由题意得, ,
∴,
∴关于的线性回归方程为.
(2)(i)由所给数据求得的线性回归方程为,相关指数为
.
因为,
所以回归方程比线性回归方程拟合效果更好.
(ii)由(i)得当温度时, .
又∵,∴(个).
即当温度时,该种药用昆虫的产卵数估计为个.
练习册系列答案
相关题目
【题目】某种蔬菜从1月1日起开始上市,通过市场调查,得到该蔬菜种植成本(单位:元/)与上市时间(单位:10天)的数据如下表:
时间 | 5 | 11 | 25 |
种植成本 | 15 | 10.8 | 15 |
(1)根据上表数据,从下列函数:,,,中(其中),选取一个合适的函数模型描述该蔬菜种植成本与上市时间的变化关系;
(2)利用你选取的函数模型,求该蔬菜种植成本最低时的上市时间及最低种植成本.