题目内容
【题目】已知△ABC的两顶点坐标A(﹣1,0),B(1,0),圆E是△ABC的内切圆,在边AC,BC,AB上的切点分别为P,Q,R,|CP|=1(从圆外一点到圆的两条切线段长相等),动点C的轨迹为曲线M.
(I)求曲线M的方程;
(Ⅱ)设直线BC与曲线M的另一交点为D,当点A在以线段CD为直径的圆上时,求直线BC的方程.
【答案】(1);(2)直线的方程或.
【解析】试题分析:本题主要考查椭圆的第一定义、椭圆的标准方程、椭圆的几何意义、直线的方程、向量垂直的充要条件等基础知识,考查用代数法研究圆锥曲线的性质以及数形结合的数学思想方法,考查运算求解能力、综合分析和解决问题的能力.第一问,利用圆外一点到圆的两条切线段长相等,转化边,得到,所以判断出曲线是以为焦点,长轴长为的椭圆(挖去与轴的交点),利用已知求出椭圆标准方程中的基本量;第二问,根据已知设出直线的方程,直线与曲线联立,消参得关于的方程,求出方程的2个根,并且写出两根之和两根之积,因为点在以为直径的圆上,所以只需使,解出参数从而得到直线的方程.
试题解析:⑴解:由题知
所以曲线是以为焦点,长轴长为的椭圆(挖去与轴的交点),
设曲线: ,
则,
所以曲线: 为所求. 4分
⑵解:注意到直线的斜率不为,且过定点,
设,
由
消得,所以,
所以8分
因为,所以
注意到点在以为直径的圆上,所以,即, 11分
所以直线的方程或为所求. 12分
练习册系列答案
相关题目