题目内容

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系中,曲线的参数方程为为参数),在以原点为极点, 轴正半轴为极轴的极坐标系中,直线的极坐标方程为.

(1)求的普通方程和的倾斜角;

(2)设点 交于两点,求.

【答案】(1) ;(2) .

【解析】试题分析:(1)曲线C的参数方程为(α为参数),利用平方关系可得曲线C的普通方程.由直线l的极坐标方程为,展开化为:ρsinθ+ρcosθ=2,利用互化公式可得:直线l的普通方程,利用斜率与倾斜角的关系即可得出.

(2)显然点在直线l上.在平面直角坐标系xOy中,直线l的参数方程是为参数).将直线l的参数方程代入曲线C的普通方程,得到关于t的一元二次方程,此方程的两根为直线l与曲线C的交点A,B对应的参数tA,tB,利用|PA|+|PB|=|tA|+|tB|即可得出.

试题解析:

(Ⅰ)由消去参数α,得

C的普通方程为

,得ρsinθ+ρcosθ=2,…(*)

代入(*),化简得

所以直线l的倾斜角为

(Ⅱ)由(Ⅰ)知,点P(0,2)在直线l上,可设直线l的参数方程为为参数),即为参数),代入并化简,得

AB两点对应的参数分别为t1,t2

,所以t1<0,t2<0,

所以=

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网