题目内容

17.若线性方程组的增广矩阵为$(\begin{array}{l}{2}&{3}&{{c}_{1}}\\{0}&{1}&{{c}_{2}}\end{array})$解为$\left\{\begin{array}{l}x=3\\ y=5\end{array}\right.$,则c1-c2=16.

分析 根据增广矩阵的定义得到$\left\{\begin{array}{l}x=3\\ y=5\end{array}\right.$,是方程组$\left\{\begin{array}{l}{2x+3y={c}_{1}}\\{y={c}_{2}}\end{array}\right.$的解,解方程组即可.

解答 解:由题意知$\left\{\begin{array}{l}x=3\\ y=5\end{array}\right.$,是方程组$\left\{\begin{array}{l}{2x+3y={c}_{1}}\\{y={c}_{2}}\end{array}\right.$的解,
即$\left\{\begin{array}{l}{{c}_{1}=6+15=21}\\{{c}_{2}=5}\end{array}\right.$,
则c1-c2=21-5=16,
故答案为:16.

点评 本题主要考查增广矩阵的求解,根据条件建立方程组关系是解决本题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网