题目内容
如图,曲线C1是以原点O为中心,F1,F2为焦点的椭圆的一部分.曲线C2是以O为顶点,F2为焦点的抛物线的一部分,A是曲线C1和C2的交点且∠AF2F1为钝角,若|AF1|=
,|AF2|=
.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240543197225877.jpg)
(1)求曲线C1和C2的方程;
(2)设点C是C2上一点,若|CF1|=
|CF2|,求△CF1F2的面积.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054319675377.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054319690368.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240543197225877.jpg)
(1)求曲线C1和C2的方程;
(2)设点C是C2上一点,若|CF1|=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054319737344.png)
(1)曲线C1的方程为
+
=1(-3≤x≤
),曲线C2的方程为y2=4x(0≤x≤
)
(2)2
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054319768450.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054319784497.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054319815388.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054319815388.png)
(2)2
(1)设椭圆方程为
+
=1(a>b>0),则2a=|AF1|+|AF2|=
+
=6,得a=3.
设A(x,y),F1(-c,0),F2(c,0),则(x+c)2+y2=(
)2,(x-c)2+y2=(
)2,两式相减得xc=
.由抛物线的定义可知|AF2|=x+c=
,
则c=1,x=
或x=1,c=
.又∠AF2F1为钝角,
则x=1,c=
不合题意,舍去.当c=1时,b=2
,
所以曲线C1的方程为
+
=1(-3≤x≤
),曲线C2的方程为y2=4x(0≤x≤
).
(2)过点F1作直线l垂直于x轴,过点C作CC1⊥l于点C1,依题意知|CC1|=|CF2|.
在Rt△CC1F1中,|CF1|=
|CF2|=
|CC1|,所以∠C1CF1=45°,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240543202994709.jpg)
所以∠CF1F2=∠C1CF1=45°.
在△CF1F2中,设|CF2|=r,则|CF1|=
r,|F1F2|=2.
由余弦定理得22+(
r)2-2×2×
rcos45°=r2,
解得r=2,
所以△CF1F2的面积S△CF1F2=
|F1F2|·|CF1|sin45°=
×2×2
sin45°=2.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054319846444.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054319862476.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054319675377.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054319690368.png)
设A(x,y),F1(-c,0),F2(c,0),则(x+c)2+y2=(
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054319675377.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054319690368.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054319815388.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054319690368.png)
则c=1,x=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054319815388.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054319815388.png)
则x=1,c=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054319815388.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054319737344.png)
所以曲线C1的方程为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054319768450.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054319784497.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054319815388.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054319815388.png)
(2)过点F1作直线l垂直于x轴,过点C作CC1⊥l于点C1,依题意知|CC1|=|CF2|.
在Rt△CC1F1中,|CF1|=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054319737344.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054319737344.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240543202994709.jpg)
所以∠CF1F2=∠C1CF1=45°.
在△CF1F2中,设|CF2|=r,则|CF1|=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054319737344.png)
由余弦定理得22+(
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054319737344.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054319737344.png)
解得r=2,
所以△CF1F2的面积S△CF1F2=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054320377338.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054320377338.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054319737344.png)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目