题目内容

已知点A(-
3
,0)
和B(
3
,0)
,动点C与A、B两点的距离之差的绝对值为2,点C的轨迹与直线y=x-2交于D、E两点,求线段DE的长.
设点C(x,y),则|CA|-|CB|=±2.
根据双曲线的定义,可知点C的轨迹是双曲线
x2
a2
-
y2
b2
=1

由2a=2,2c=|AB|=2
3
,得a2=1,b2=2.
故点C的轨迹方程是x2-
y2
2
=1

x2-
y2
2
=1
y=x-2
,得 x2+4x-6=0.
∵△>0,∴直线与双曲线有两个交点.
设D(x1,y1)、E(x2,y2),则 x1+x2=-4,x1•x2=-6.
|DE|=
(x1-x2)2+(y1-y2)2
=
2
(x1+x2)2-4x1x2
=4
5
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网