题目内容
【题目】已知动点到点的距离,等于它到直线的距离.
(1)求点的轨迹的方程;
(2)过点任意作互相垂直的两条直线,分别交曲线于点和.
设线段,的中点分别为,求证:直线恒过一个定点;
(3)在(2)的条件下,求面积的最小值
【答案】(Ⅰ)(Ⅱ)见解析(Ⅲ)
【解析】
题考查圆锥曲线和直线的位置关系和综合应用,具有一定的难度,解题时要认真审题,注意挖掘隐含条件,仔细解答.
(Ⅰ)设动点M的坐标为(x,y),由题意得
(x-1)2+y2
(x-1)2+y2
=|x+1|,由此能求出点M的轨迹C的方程.
(Ⅱ)设A,B两点坐标分别为(x1,y1),(x2,y2),则点P的坐标由题意可设直线l1的方程为y=k(x-1)(k≠0),由
y2=4x |
y=k(x-1) |
y2=4x |
y=k(x-1) |
得k2x2-(2k2+4)x+k2=0.再由根的判别式和根与系数的关系进行求解.
(Ⅲ)题题设能求出|EF|=2,所以△FPQ面积S由均值不等式得到。
解:(Ⅰ)设动点的坐标为,由题意得,,化简得,所以点的轨迹的方程为(或由抛物线定义 解) ……4分
(Ⅱ)设两点坐标分别为,,则点的坐标为.由题意可设直线的方程为 ,
由得.
.
因为直线与曲线于两点,所以,.所以点的坐标为.
由题知,直线的斜率为,同理可得点的坐标为.
当时,有,此时直线的斜率.
所以,直线的方程为,
整理得.于是,直线恒过定点;
当时,直线的方程为,也过点.
综上所述,直线恒过定点. …………10分
(Ⅲ) , 面积.
当且仅当时,“”成立,所以面积的最小值为.……13分
【题目】如图,,,是同一平面内的三条平行直线, 与之间的距离是1,与之间的距离是2,三角形的三个顶点分别在,,上.
(1)若为正三角形,求其边长;
(2)若是以B为直角顶点的直角三角形,求其面积的最小值.
【题目】已知函数.
(1)完成表一中对应的值,并在坐标系中用描点法作出函数的图象:(表一)
0.25 | 0.5 | 0.75 | 1 | 1.25 | 1.5 | |
0.08 | 1.82 | 2.58 |
(2)根据你所作图象判断函数的单调性,并用定义证明;
(3)说明方程的根在区间存在的理由,并从表二中求使方程的根的近似值达到精确度为0.01时运算次数的最小值并求此时方程的根的近似值,且说明理由.
(表二)二分法的结果
运算次数的值 | 左端点 | 右端点 | ||
-0.537 | 0.6 | 0.75 | 0.08 | |
-0.217 | 0.675 | 0.75 | 0.08 | |
-0.064 | 0.7125 | 0.75 | 0.08 | |
-0.064 | 0.7125 | 0.73125 | 0.011 | |
-0.03 | 0.721875 | 0.73125 | 0.011 | |
-0.01 | 0.7265625 | 0.73125 | 0.011 |