题目内容

【题目】已知△ABC的三个内角A,B,C所对的边分别为a,b,c,∠A是锐角,且 b=2asinB.
(1)求∠A的度数;
(2)若a=7,△ABC的面积为10 ,求b2+c2的值.

【答案】
(1)解:∵ b=2asinB,

∴由正弦定理知: sinB=2sinAsinB,

∵∠B是三角形内角,

∴sinB>0,

∴sinA=

∴∠A=60°或120°,,

∵∠A是锐角,

∴∠A=60°.


(2)解:∵a=7,△ABC的面积为10

∴10 = bcsin60°,

∴bc=40;

由余弦定理得72=b2+c2﹣2bccos60°,

∴b2+c2=89.


【解析】(1)利用正弦定理,可把 b=2asinB变形为 sinB=2sinAsinB,从而解出sinA,进而求出A.(2)利用三角形的面积公式可得bc=40,代入余弦定理即可求出b2+c2的值.
【考点精析】关于本题考查的正弦定理的定义和余弦定理的定义,需要了解正弦定理:;余弦定理:;;才能得出正确答案.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网