题目内容
【题目】已知a,b,c为△ABC的三个内角A,B,C的对边,向量 =(﹣1, ), =(cosA,sinA).若 ⊥ ,且acosB+bcosA=csinC,则角A,B的大小分别为( )
A. ,
B. ,
C. ,
D. ,
【答案】A
【解析】解:∵根据题意, ⊥ ,可得 =0,
即﹣cosA+ sinA=0,可得:2sin(A﹣ )=0,
∵A∈(0,π),A﹣ ∈(﹣ , ),
∴解得:A= ,
又∵acosB+bcosA=csinC,
∴由正弦定理可得,sinAcosB+sinBcosA=sin2C,
∴sinAcosB+sinBcosA=sin(A+B)=sinC=sin2C,
∵sinC≠0,可得:sinC=1,又C∈(0,π),
∴C= ,
∴B= .
故选:A.
【考点精析】认真审题,首先需要了解正弦定理的定义(正弦定理:).
练习册系列答案
相关题目