题目内容

【题目】已知等比数列{an}的前n项和为Sn , 公比q>0,S2=2a2﹣2,S3=a4﹣2.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn= ,Tn为{bn}的前n项和,求T2n

【答案】解:(I)∵等比数列{an}的前n项和为Sn , 公比q>0,S2=2a2﹣2,S3=a4﹣2. ∴a3=a4﹣2a2 , 可得a2q=a2(q2﹣2),
∴q2﹣q﹣2=0,解得q=2.∴a1+a2=2a2﹣2,即a1=a2﹣2=2a1﹣2,解得a1=2.
∴an=2n
(II)n为奇数时,bn= = =
n为偶数时,bn=
∴T2n= + +…+ + +…+
= + +…+
= + +…+
设A= +…+
A= +…+ +
A= +…+ =
∴A=
∴T2n= +
【解析】(I)等比数列{an}的前n项和为Sn , 公比q>0,S2=2a2﹣2,S3=a4﹣2.可得a3=a4﹣2a2 , a2q=a2(q2﹣2),解得q.进而得出a1 , 可得an . (II)n为奇数时,bn= = = .n为偶数时,bn= .分组求和,利用“裂项求和”方法可得奇数项之和;利用“错位相减法”与等比数列的求和公式可得偶数项之和.
【考点精析】解答此题的关键在于理解数列的前n项和的相关知识,掌握数列{an}的前n项和sn与通项an的关系,以及对数列的通项公式的理解,了解如果数列an的第n项与n之间的关系可以用一个公式表示,那么这个公式就叫这个数列的通项公式.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网