题目内容
【题目】传承传统文化再掀热潮,央视科教频道以诗词知识竞赛为主的《中国诗词大会》火爆荧屏.将中学组和大学组的参赛选手按成绩分为优秀、良好、一般三个等级,随机从中抽取了100名选手进行调查,下面是根据调查结果绘制的选手等级人数的条形图.
(1)若将一般等级和良好等级合称为合格等级,根据已知条件完成下面的列联表,据此资料你是否有95%的把握认为选手成绩“优秀”与文化程度有关?
优秀 | 合格 | 合计 | |
大学组 | |||
中学组 | |||
合计 |
注:,其中.
0.10 | 0.05 | 0.005 | |
2.706 | 3.841 | 7.879 |
(2)若参赛选手共6万人,用频率估计概率,试估计其中优秀等级的选手人数.
(3)在优秀等级的选手中取6名,依次编号为1,2,3,4,5,6.在良好等级的选手中取6名,依次编号为1,2,3,4,5,6,在选出的6名优秀等级的选手中任取一名,记其编号为,在选出的6名良好等级的选手中任取一名,记其编号为,求使得方程组有唯一一组实数解的概率.
【答案】(1)见解析;(2)4.5;(3)
【解析】试题分析:(1)由条形图可知列联表,利用公式求得的观测值,即可作出预测结果;
(2)由条形图知,所抽取的人中优秀等级有人,得到优秀率,用频率估计概率,得参赛选手中优秀等级的概率,即可求解所有参赛选手中优秀等级的选手人数;
(3)利用古典概型及其概率的计算公式,即可求解相应的概率.
试题解析:
(1)由条形图可知列联表如下:
优秀 | 合格 | 合计 | |
大学组 | 45 | 10 | 55 |
中学组 | 30 | 15 | 45 |
合计 | 75 | 25 | 100 |
∵的观测值,
∴没有95%的把握认为选物成绩“优秀”与文化程度有关.
(2)由条形图知,所抽取的100人中优秀等级有75人,故优秀率为,用频率估计概率,则参赛选手中优秀等级的概率是,∴所有参赛选手中优秀等级的选手人数约为(万).
(3)从1,2,3,4,5,6中取,从1,2,3,4,5,6中取,共有36种组合,要使方程组有唯一一组实数解,则,共33种组合,故所求概率.
【题目】某项科研活动共进行了5次试验,其数据如表所示:
特征量 | 第1次 | 第2次 | 第3次 | 第4次 | 第5次 |
x | 555 | 559 | 551 | 563 | 552 |
y | 601 | 605 | 597 | 599 | 598 |
(Ⅰ)从5次特征量y的试验数据中随机地抽取两个数据,求至少有一个大于600的概率;
(Ⅱ)求特征量y关于x的线性回归方程 ;并预测当特征量x为570时特征量y的值.
(附:回归直线的斜率和截距的最小二乘法估计公式分别为 = , )