题目内容

【题目】自贡某个工厂于2016年下半年对生产工艺进行了改造(每半年为一个生产周期),从2016年一年的产品中用随机抽样的方法抽取了容量为50的样本,用茎叶图表示如图所示,已知每个生产周期内与其中位数误差在±5范围内(含±5)的产品为优质品,与中位数误差在±15范围内(含±15)的产品为合格品(不包括优质品),与中位数误差超过±15的产品为次品.企业生产一件优质品可获利润20元,生产一件合格品可获利润10元,生产一件次品要亏损10元.

(Ⅰ)求该企业2016年一年生产一件产品的利润的分布列和期望;
(Ⅱ)是否有95%的把握认为“优质品与生产工艺改造有关”.
附:

P(K2≥k)

0.050

0.010

0.001

k

3.841

6.635

10.828

K2=

【答案】解:(Ⅰ)上半年的数据为:13,14,18,21,22,26,27,29,31,34,35,35,35,38, 42,43,45,46,46,53,54,57,58,61,62;
“中位数”为35,优质品有6个,合格品有10个,次品有9个;
下半年的数据为:13,18,20,24,24,28,29,30,31,32,33,33,35,36,37,
40,41,42,42,43,47,49,51,58,62;
“中位数”为35,优质品有9个,合格品有11个,次品有5个;
则这个样本的50件产品的利润的频率分布表为

利润

频数

频率

20

15

0.3

10

21

0.42

﹣10

14

0.28

所以,该企业2016年一年生产一件产品的利润的分布列为

频率

利润

优质品

0.3

6

合格品

0.42

4.2

次品

0.28

﹣2.8

期望值为6+4.2﹣2.8=7.4;
(Ⅱ)由题意,填写2×2列联表如下;

上半年

下半年

优质品

6

9

15

非优质品

19

16

35

25

25

50

计算观测值K2= ≈0.857,
由于0.857<3.841,
所以没有95%的把握认为“优质品与生产工艺改造有关”.
【解析】(Ⅰ)根据上半年和下半年的数据,得出这50件产品的利润频率分布表,写出生产一件产品的利润分布列,计算期望值;(Ⅱ)填写2×2列联表,计算观测值K2 , 比较临界值得出结论.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网