题目内容
【题目】某住宅小区为了使居民有一个优雅、舒适的生活环境,计划建一个八边形的休闲小区,其主体造型的平面图是由两个相同的矩形ABCD和矩形EFGH构成的面积是200 m2的十字形区域,现计划在正方形MNPQ上建一花坛,造价为4 200元/m2,在四个相同的矩形上(图中阴影部分)铺花岗岩地坪,造价为210元/m2,再在四个空角上铺草坪,造价为80元/m2.
(1)设总造价为S元,AD的边长为x m,试建立S关于x的函数解析式;
(2)计划至少要投多少万元才能建造这个休闲小区?
【答案】(1)S=38 000+4 000x2+ (0<x<10);(2)至少要投入11.8万元。
【解析】
(1)根据由两个相同的矩形ABCD和EFGH构成的十字形地域,四个小矩形加一个正方形面积共为200平方米得出AM的函数表达式,最后建立建立S与x的函数关系即得;
(2)利用基本不等式求出(1)中函数S的最小值,并求得当x取何值时,函数S的最小值即可.
(1)设DQ=y m,则x2+4xy=200,即y=.
所以S=4 200x2+210×4xy+80×4×y2
=38 000+4 000x2+ (0<x<10).
(2)由(1),得S=38 000+4 000x2+
≥38 000+2=118 000,
当且仅当4 000x2=,即x=时取等号.
因为118 000元=11.8万元,
所以计划至少要投入11.8万元才能建造这个休闲小区.
练习册系列答案
相关题目