题目内容

如图,直角梯形ABMN中,∠NAB=90°,AN∥BM,AB=2,AN=,BM=,椭圆C以A,B为焦点且过点N.

(1)建立适当的坐标系,求椭圆C方程;
(2)若点E满足,问是否存在不平行AB的直线L与椭圆C交于P,Q两点,且|PE|=|QE|,若存在,求出直线L与AB夹角的范围;若不存在,说明理由?
(1)
(2)存在           L与AB的夹角范围为(0,
(1)先建立直角坐标系,设所求椭圆方程为,根据AB=2,AN=,BM=,得A(-1,0), B(1,0), N(-1,),代入椭圆方程可求得;(2)设L:y="kx+m" (k≠0),与椭圆方程联立,求得PQ的中点坐标用k,m表示,由PQ⊥EFm=,由Δ>0可得4k2+3≥m2
解:(1)以AB所在直线为x轴,AB中点O为原点建立如图所示的坐标系,
A(-1,0), B(1,0), N(-1,),
设所求椭圆方程为, …………………2分
把N点坐标代入椭圆方程,可得:,,
解得,
故所求椭圆方程为:
(2)设E(x,y),M(1,)∵∴E(0,1)
显然L:x=0不满足
设L:y="kx+m" (k≠0),与椭圆方程
联立可得:(3+4k2)x2+8kmx+4m2-12=0
由Δ>0可得4k2+3≥m2, ……………………9分
设PQ的中点为F(x0,y0),P(x1,y1)
Q(x2,y2),则2x0=,2y0=
由PQ⊥EFm=,
,
∴0<k2≤1,∴k∈[-1,1]且k≠0∴L与AB的夹角范围为(0,…13分
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网