题目内容
如图,直角梯形ABMN中,∠NAB=90°,AN∥BM,AB=2,AN=
,BM=
,椭圆C以A,B为焦点且过点N.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232119042641936.png)
(1)建立适当的坐标系,求椭圆C方程;
(2)若点E满足
,问是否存在不平行AB的直线L与椭圆C交于P,Q两点,且|PE|=|QE|,若存在,求出直线L与AB夹角的范围;若不存在,说明理由?
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211904233388.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211904248338.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232119042641936.png)
(1)建立适当的坐标系,求椭圆C方程;
(2)若点E满足
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211904280811.png)
(1)![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211904295754.png)
(2)存在 L与AB的夹角范围为(0,![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211904311396.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211904342179.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211904295754.png)
(2)存在 L与AB的夹角范围为(0,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211904311396.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211904342179.png)
(1)先建立直角坐标系,设所求椭圆方程为
,根据AB=2,AN=
,BM=
,得A(-1,0), B(1,0), N(-1,
),代入椭圆方程可求得;(2)设L:y="kx+m" (k≠0),与椭圆方程联立,求得PQ的中点坐标用k,m表示,由PQ⊥EF
m=
,由Δ>0可得4k2+3≥m2。
解:(1)以AB所在直线为x轴,AB中点O为原点建立如图所示的坐标系,
A(-1,0), B(1,0), N(-1,
),
设所求椭圆方程为
, …………………2分
把N点坐标代入椭圆方程,可得:
,
,
解得
,
故所求椭圆方程为:![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211904295754.png)
(2)设E(x,y),M(1,
)∵
∴E(0,1)
显然L:x=0不满足
设L:y="kx+m" (k≠0),与椭圆方程
联立可得:(3+4k2)x2+8kmx+4m2-12=0
由Δ>0可得4k2+3≥m2, ……………………9分
设PQ的中点为F(x0,y0),P(x1,y1)
Q(x2,y2),则2x0=
,2y0=![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211904685735.png)
由PQ⊥EF
m=
,
∴
≥
,
∴0<k2≤1,∴k∈[-1,1]且k≠0∴L与AB的夹角范围为(0,![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211904311396.png)
…13分
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232119043581107.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211904233388.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211904248338.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211904233388.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211904451223.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211904467661.png)
解:(1)以AB所在直线为x轴,AB中点O为原点建立如图所示的坐标系,
A(-1,0), B(1,0), N(-1,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211904233388.png)
设所求椭圆方程为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232119043581107.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232119045293659.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211904545707.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211904560638.png)
解得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211904592622.png)
故所求椭圆方程为:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211904295754.png)
(2)设E(x,y),M(1,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211904248338.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211904280811.png)
显然L:x=0不满足
设L:y="kx+m" (k≠0),与椭圆方程
联立可得:(3+4k2)x2+8kmx+4m2-12=0
由Δ>0可得4k2+3≥m2, ……………………9分
设PQ的中点为F(x0,y0),P(x1,y1)
Q(x2,y2),则2x0=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211904670770.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211904685735.png)
由PQ⊥EF
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211904451223.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211904467661.png)
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211904732525.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211904779747.png)
∴0<k2≤1,∴k∈[-1,1]且k≠0∴L与AB的夹角范围为(0,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211904311396.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211904342179.png)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目