题目内容
设L为曲线C:y=在点(1,0)处的切线.(1)求L的方程;(2)证明:除切点(1,0)之外,曲线C在直线L的下方.
(1)y=x-1(2)见解析
解析
已知函数f(x)=ax+x2-xlna(a>0,a≠1).(1)当a>1时,求证:函数f(x)在(0,+∞)上单调递增;(2)若函数y=|f(x)-t|-1有三个零点,求t的值;(3)若存在x1、x2∈[-1,1],使得|f(x1)-f(x2)|≥e-1,试求a的取值范围.
已知函数f(x)=x3-ax-1(1)若f(x)在实数集R上单调递增,求a的取值范围;(2)是否存在实数a,使f(x)在(-1,1)上单调递减,若存在,求出a的取值范围;若不存在,说明理由;(3)证明f(x)=x3-ax-1的图象不可能总在直线y=a的上方.
已知函数,(,).(1)判断曲线在点(1,)处的切线与曲线的公共点个数;(2)当时,若函数有两个零点,求的取值范围.
已知函数(e为自然对数的底数)(1)求函数的单调区间;(2)设函数,存在实数,使得成立,求实数的取值范围
已知a,b∈R,函数f(x)=a+ln(x+1)的图象与g(x)=x3-x2+bx的图象在交点(0,0)处有公共切线.(1)证明:不等式f(x)≤g(x)对一切x∈(-1,+∞)恒成立;(2)设-1<x1<x2,当x∈(x1,x2)时,证明:.
已知函数,(>0,,以点为切点作函数图象的切线,记函数图象与三条直线所围成的区域面积为.(1)求;(2)求证:<;(3)设为数列的前项和,求证:<.来
已知:函数.(1)函数的图像在点处的切线的倾斜角为,求的值;(2)若存在使,求的取值范围.
已知函数f(x)=ln ax- (a≠0).(1)求函数f(x)的单调区间及最值; (2)求证:对于任意正整数n,均有1+(e为自然对数的底数);(3)当a=1时,是否存在过点(1,-1)的直线与函数y=f(x)的图象相切?若存在,有多少条?若不存在,请说明理由.