题目内容
【题目】如图所示,平面平面,且四边形为矩形,四边形为直角梯形,,,,.
(Ⅰ)求证:平面;
(Ⅱ)求平面与平面所成锐二面角的大小;
(Ⅲ)求直线与平面所成角的余弦值.
【答案】(Ⅰ)详见解析;(Ⅱ);(Ⅲ).
【解析】
证明平面,以 为原点,所在直线为轴,所在直线为轴,所在直线为轴建立空间直角坐标系,(Ⅰ)为平面的一个法向量,证明平面,只需证明;(Ⅱ)求出平面的一个法向量、平面一个法向量,利用向量的夹角公式,即可求平面与平面所成锐二面角的余弦值;(Ⅲ)求出平面一个法向量为,利用向量的夹角公式,即可求直线与平面所成角的余弦值.
(Ⅰ)证明:四边形为直角梯形,四边形为矩形,
,,
又平面平面,且平面平面,
平面.
以为原点,所在直线为轴,所在直线为轴,所在直线为轴建立如图所示空间直角坐标系.根据题意,得以下点的坐标:
,,,,,
则,.
,,
为平面的一个法向量.
又.平面.
平面.
(Ⅱ)设平面的一个法向量为,
则,,
得
平面,平面一个法向量为,
设平面与平面所成锐二面角的大小为,
则
因此,平面与平面所成锐二面角的大小为.
(Ⅲ)根据(Ⅱ)知平面一个法向量为 得
,
设直线与平面所成角为,则
因此,直线与平面所成角的余弦值为.
【题目】某省确定从2021年开始,高考采用“”的模式,取消文理分科,即“3”包括语文、数学、外语,为必考科目;“1”表示从物理、历史中任选一门;“2”则是从生物、化学、地理、政治中选择两门,共计六门考试科目.某高中从高一年级2000名学生(其中女生900人)中,采用分层抽样的方法抽取名学生进行调查.
(1)已知抽取的名学生中含男生110人,求的值及抽取到的女生人数;
(2)学校计划在高二上学期开设选修中的“物理”和“历史”两个科目,为了了解学生对这两个科目的选课情况,对在(1)的条件下抽取到的名学生进行问卷调杳(假定每名学生在这两个科目中必须洗择一个科目且只能选择一个科目).下表是根据调查结果得到的列联表,请将列联表补充完整,并判断是否有的把握认为选择科目与性别有关?说明你的理由;
性别 | 选择物理 | 选择历史 | 总计 |
男生 | 50 | ||
女生 | 30 | ||
总计 |
(3)在(2)的条件下,从抽取的选择“物理”的学生中按分层抽样抽取6人,再从这6名学生中抽取2人,对“物理”的选课意向作深入了解,求2人中至少有1名女生的概率.
附:,其中.
0.100 | 0.050 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |