题目内容
【题目】从秦朝统一全国币制到清朝末年,圆形方孔铜钱(简称“孔方兄”)是我国使用时间长达两千多年的货币.如图1,这是一枚清朝同治年间的铜钱,其边框是由大小不等的两同心圆围成的,内嵌正方形孔的中心与同心圆圆心重合,正方形外部,圆框内部刻有四个字“同治重宝”.某模具厂计划仿制这样的铜钱作为纪念品,其小圆内部图纸设计如图2所示,小圆直径1厘米,内嵌一个大正方形孔,四周是四个全等的小正方形(边长比孔的边长小),每个正方形有两个顶点在圆周上,另两个顶点在孔边上,四个小正方形内用于刻铜钱上的字.设,五个正方形的面积和为S.
(1)求面积S关于的函数表达式,并求定义域;
(2)求面积S的最小值及此时的值.
【答案】(1),的取值范围为,,;(2)时,面积S有最小值为.
【解析】
(1)构造直角三角形,利用小圆直径与三角函数分别求出大、小正方形的边长,即可求得五个正方形的面积表达式,由小正方形边长小于内嵌一个大正方形的边长可求得的取值范围;(2)利用降幂公式及辅助角公式化简面积表达式为正弦型函数,当时S取最小值,此时求出的值然后求出,由二倍角的正弦公式可求得.
(1)过点O分别作小正方形边,大正方形边的垂线,垂足分别为E,F,
因为内嵌一个大正方形孔的中心与同心圆圆心重合,
所以点E,F分别为小正方形和大正方形边的中点,
所以小正方形的边长为,
大正方形的边长为,
所以五个正方形的面积和为,
,
因为小正方形边长小于内嵌一个大正方形的边长,
所以,,,
所以的取值范围为,,
所以面积S关于的函数表达式为,
的取值范围为,,.
(2)法一:,
,
,
,其中,,
所以,此时,因为,所以
,所以,
所以,
则,化简得:,
由此解得:,
因为,所以,
答:面积S最小值为,
法二:,
,
令,则,
设,,
令,得:,
t | |||
- | 0 | + | |
极小值 |
所以时,面积S最小值为.