题目内容
7. 如图是根据某校10位高一同学的身高(单位:cm)画出的茎叶图,其中左边的数字从左到右分别表示学生身高的百位数字和十位数字,右边的数字表示学生身高的个数数字,从图中可以得到这10位同学身高的中位数是162.分析 根据茎叶图中的数据,结合中位数的概念,即可求出结果.
解答 解:根据茎叶图中的数据,得;
这10位同学的身高按从小到大的顺序排列,
排在第5、6的是161、163,
所以,它们的中位数是$\frac{161+163}{2}$=162.
故答案为:162.
点评 本题考查了中位数的概念与应用问题,是基础题目.
练习册系列答案
相关题目
18.下列结论正确的是( )
A. | 若向量$\overrightarrow{a}$∥$\overrightarrow{b}$,则存在唯一实数λ使$\overrightarrow{a}$=λ$\overrightarrow{b}$ | |
B. | 已知向量$\overrightarrow{a}$,$\overrightarrow{b}$为非零向量,则“$\overrightarrow{a}$,$\overrightarrow{b}$的夹角为钝角”的充要条件是“$\overrightarrow{a}$•$\overrightarrow{b}$<0” | |
C. | 若命题p:?x∈R,x2-x+1<0,则¬p:?x∈R,x2-x+1>0 | |
D. | “若θ=$\frac{π}{3}$,则cosθ=$\frac{1}{2}$”的否命题为“若θ≠$\frac{π}{3}$,则cosθ$≠\frac{1}{2}$” |
2.已知C${\;}_{n}^{0}$+3C${\;}_{n}^{1}$+32C${\;}_{n}^{2}$+…+3nC${\;}_{n}^{n}$=1024,则C${\;}_{n+1}^{2}$+C${\;}_{n+1}^{3}$的值为( )
A. | 21 | B. | 35 | C. | 56 | D. | 210 |
19.直线y=4x与曲线y=x3在第一象限内围成的封闭图形的面积为( )
A. | 4$\sqrt{2}$ | B. | 4 | C. | 2$\sqrt{2}$ | D. | 2 |
12.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的渐近线与圆x2+y2-4x+2=0,有公共点,则该双曲线离心率的取值范围是( )
A. | (1,2] | B. | [$\sqrt{2}$,+∞) | C. | (1,$\sqrt{2}$] | D. | (1,$\sqrt{2}$) |