题目内容
【题目】已知双曲线E:﹣=1(a>0,b>0)的两条渐近线分别为l1:y=2x,l2:y=﹣2x.
(1)求双曲线E的离心率;
(2)如图,O为坐标原点,动直线l分别交直线l1 , l2于A,B两点(A,B分别在第一、第四象限),且△OAB的面积恒为8,试探究:是否存在总与直线l有且只有一个公共点的双曲线E?若存在,求出双曲线E的方程,若不存在,说明理由.
【答案】解:(1)因为双曲线E的渐近线分别为l1:y=2x,l2:y=﹣2x,
所以=2.
所以=2.
故c=a,
从而双曲线E的离心率e==.
(2)由(1)知,双曲线E的方程为﹣=1.
设直线l与x轴相交于点C,
当l⊥x轴时,若直线l与双曲线E有且只有一个公共点,则|OC|=a,|AB|=4a,
所以|OC||AB|=8,
因此a4a=8,解得a=2,此时双曲线E的方程为﹣=1.
以下证明:当直线l不与x轴垂直时,双曲线E的方程为﹣=1也满足条件.
设直线l的方程为y=kx+m,依题意,得k>2或k<﹣2;
则C(﹣,0),记A(x1 , y1),B(x2 , y2),
由得y1=,同理得y2=,
由S△OAB=|OC||y1﹣y2|得:
|﹣||﹣|=8,即m2=4|4﹣k2|=4(k2﹣4).
由得:(4﹣k2)x2﹣2kmx﹣m2﹣16=0,
因为4﹣k2<0,
所以△=4k2m2+4(4﹣k2)(m2+16)=﹣16(4k2﹣m2﹣16),
又因为m2=4(k2﹣4),
所以△=0,即直线l与双曲线E有且只有一个公共点.
因此,存在总与直线l有且只有一个公共点的双曲线E,且E的方程为﹣=1.
【解析】(1)依题意,可知=2,易知c=a,从而可求双曲线E的离心率;
(2)由(1)知,双曲线E的方程为﹣=1,设直线l与x轴相交于点C,分l⊥x轴与直线l不与x轴垂直讨论,当l⊥x轴时,易求双曲线E的方程为﹣=1.当直线l不与x轴垂直时,设直线l的方程为y=kx+m,与双曲线E的方程联立,利用由S△OAB=|OC||y1﹣y2|=8可证得:双曲线E的方程为﹣=1,从而可得答案.
【题目】甲、乙两同学5次综合测评的成绩如茎叶图所示.
甲 | 乙 | |||||
9 | 8 | 8 | 3 | 3 | 7 | |
2 | 1 | 0 | 9 | ● | 9 |
老师在计算甲、乙两人平均分时,发现乙同学成绩的一个数字无法看清.若从{0,1,2,…,9}随机取一个数字代替,则乙的平均成绩超过甲的平均成绩的概率为( )
A.
B.
C.
D.