题目内容
【题目】已知函数,,其中,设.
(1)判断的奇偶性,并说明理由;
(2)若,求使成立的x的集合
【答案】(1)奇函数;(2){x|0<x<1}
【解析】
(1)依题意得1+x>0,1-x>0,
∴函数h(x)的定义域为(-1,1).
∵对任意的x∈(-1,1),-x∈(-1,1),
h(-x)=f(-x)-g(-x)
=loga(1-x)-loga(1+x)
=g(x)-f(x)=-h(x),
∴h(x)是奇函数.
(2)由f(3)=2,得a=2.
此时h(x)=log2(1+x)-log2(1-x),
由h(x)>0即log2(1+x)-log2(1-x)>0,
∴log2(1+x)>log2(1-x).
由1+x>1-x>0,解得0<x<1.
故使h(x)>0成立的x的集合是{x|0<x<1}.
练习册系列答案
相关题目