题目内容
.(本小题满分12分)设函数
定义在
上,
,导函数
,![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200052946768.png)
(I)讨论
与
的大小关系;
(II)求
的取值范围,使得
对任意
成立.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200052868447.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200052883535.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200052899479.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200052930610.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200052946768.png)
(I)讨论
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200052961442.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200052977510.png)
(II)求
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200052993283.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200053008752.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200053024393.png)
解:(I)∵
,∴
(c为常数),又∵
,所以
,即
,∴
,∴
,
令
得
,
当x∈(0,1)时,
,
是减函数,故(0,1)是
的单调减区间。
当x∈(1,+∞)时,
,
是增函数,故(1,+∞)是
的单调递增区间,
因此,
是
的唯一极值点,且为极小值点,从而是最小值点,
所以
的最小值为![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200053851459.png)
,设
,则
,
当
时,
,即
.
当
时,
,因此,
在
内单调递减,
当
时,
,即
;
当
时,
,即![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200054677664.png)
(II)由(I)知
的最小值为1,所以,
,对任意
成立
,即
,从而得![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200055130457.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200052930610.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200053071623.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200052899479.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200053102462.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200053133338.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200053320845.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200053336707.png)
令
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200053367572.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200053383323.png)
当x∈(0,1)时,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200053523582.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200052961442.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200052961442.png)
当x∈(1,+∞)时,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200053679593.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200052961442.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200052961442.png)
因此,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200053383323.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200052961442.png)
所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200052961442.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200053851459.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200053866703.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232000538971066.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200054116880.png)
当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200053383323.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200054163532.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200054272643.png)
当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200054287812.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200054521812.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200054537484.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200052883535.png)
当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200054568435.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200054599713.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200054615674.png)
当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200054631360.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200054662701.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200054677664.png)
(II)由(I)知
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200052961442.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200053008752.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200053024393.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200054958692.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200055114423.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200055130457.png)
略
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目