题目内容
【题目】已知椭圆,离心率为,直线恒过的一个焦点.
(1)求的标准方程;
(2)设为坐标原点,四边形的顶点均在上,交于,且,若直线的倾斜角的余弦值为,求直线与轴交点的坐标.
【答案】(1)(2)
【解析】
(1)将转化成直线点斜式方程形式,求出所过的恒点,进而知道椭圆的焦点,再根据椭圆的离心率公式进行求解即可.
(2)根据向量等式,可以确定分别是的中点.设,求出直线的方程,与椭圆方程联立,消元,利用一元二次方程根与系数关系,求出的坐标,同理求出点坐标,求出直线的方程,最后求出直线与轴交点的坐标.
(1)设椭圆的半焦距为,可化为,所以直线恒过点,所以点,可得.因为离心率为,所以,解得,由得,所以的标准方程为.
(2)因为,所以.由得分别是的中点.设.由直线的倾斜角的余弦值为,得直线的斜率为2,所以,联立消去,得.显然,,且, ,所以,可得,同理可得,所以,所以.令,得,所以直线与轴交点的坐标为.
练习册系列答案
相关题目
【题目】某快递公司收取快递费用的标准是:重量不超过的包裹收费元;重量超过的包裹,除收费元之外,超过的部分,每超出(不足,按计算)需再收元.该公司将最近承揽的件包裹的重量统计如下:
包裹重量(单位: ) | |||||
包裹件数 |
公司对近天,每天揽件数量统计如下表:
包裹件数范围 | |||||
包裹件数 (近似处理) | |||||
天数 |
以上数据已做近似处理,并将频率视为概率.
(1)计算该公司未来天内恰有天揽件数在之间的概率;
(2)(i)估计该公司对每件包裹收取的快递费的平均值;
(ii)公司将快递费的三分之一作为前台工作人员的工资和公司利润,剩余的用作其他费用.目前前台有工作人员人,每人每天揽件不超过件,工资元.公司正在考虑是否将前台工作人员裁减人,试计算裁员前后公司每日利润的数学期望,并判断裁员是否对提高公司利润更有利?