题目内容
【题目】对于定义在上的函数,若函数满足:①在区间上单调递减;②存在常数p,使其值域为,则称函数为的“渐近函数”;
(1)证明:函数是函数的渐近函数,并求此时实数p的值;
(2)若函数,证明:当时,不是的渐近函数.
【答案】(1)证明见解析,;(2)证明见解析;
【解析】
(1)通过令,利用“渐近函数”的定义逐条验证即可;(2)通过记,结合“渐近函数”的定义可知,问题转化为求时,的最大值问题,进而计算可得的范围,从而证明结论.
(1)根据题意,令,
则,
所以,
所以在区间上单调递减,且,
所以,
于是函数是函数,的渐近函数,
此时实数.
(2)即,
,
假设函数,的渐近函数是,
则当时,,即,
令函数,,
则,
当时,,
当时,,在区间上单调递增,
且
所以,
所以,
所以当时,不是的渐近函数.
【题目】红铃虫是棉花的主要害虫之一,能对农作物造成严重伤害,每只红铃虫的平均产卵数y和平均温度x有关,现收集了以往某地的7组数据,得到下面的散点图及一些统计量的值.(表中)
平均温度 | 21 | 23 | 25 | 27 | 29 | 32 | 35 | ||
平均产卵数/个 | 7 | 11 | 21 | 24 | 66 | 115 | 325 | ||
27.429 | 81.286 | 3.612 | 40.182 | 147.714 | |||||
(1)根据散点图判断,与(其中自然对数的底数)哪一个更适宜作为平均产卵数y关于平均温度x的回归方程类型?(给出判断即可,不必说明理由)并由判断结果及表中数据,求出y关于x的回归方程.(计算结果精确到小数点后第三位)
(2)根据以往统计,该地每年平均温度达到28℃以上时红铃虫会造成严重伤害,需要人工防治,其他情况均不需要人工防治记该地每年平均温度达到28℃以上的概率为.
①记该地今后5年中,恰好需要3次人工防治的概率为,求的最大值,并求出相应的概率p.
②当取最大值时,记该地今后5年中,需要人工防治的次数为X,求X的数学期望和方差.
附:线性回归方程系数公式.