题目内容

【题目】设等差数列{an}的前n项和为Sn , 已知a3=24,a6=18.
(Ⅰ) 求数列{an}的通项公式;
(Ⅱ)求数列{an}的前n项和Sn
(Ⅲ)当n为何值时,Sn最大,并求Sn的最大值.

【答案】解:设等差数列的首项为a1 , 公差为d,
,得
(Ⅰ)an=a1+(n﹣1)d=28﹣2(n﹣1)=30﹣2n;
(Ⅱ)
(Ⅲ)因为
由二次函数的性质可得,当n= 时函数有最大值,
而n∈N* , 所以,当n=14或15时,Sn最大,最大值为210
【解析】(Ⅰ)设出等差数列的首项和公差,由已知条件列方程组求出首项和公差,然后直接代入等差数列的通项公式求解;(Ⅱ)把(Ⅰ)中求出的首项和公差直接代入等差数列的前n项和公式求解;(Ⅲ)利用二次函数的性质求前n项和的最大值.
【考点精析】掌握等差数列的通项公式(及其变式)和等差数列的前n项和公式是解答本题的根本,需要知道通项公式:;前n项和公式:

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网