题目内容
【题目】设等差数列{an}的前n项和为Sn , 已知a3=24,a6=18.
(Ⅰ) 求数列{an}的通项公式;
(Ⅱ)求数列{an}的前n项和Sn;
(Ⅲ)当n为何值时,Sn最大,并求Sn的最大值.
【答案】解:设等差数列的首项为a1 , 公差为d,
由 ,得 .
(Ⅰ)an=a1+(n﹣1)d=28﹣2(n﹣1)=30﹣2n;
(Ⅱ) .
(Ⅲ)因为 ,
由二次函数的性质可得,当n= 时函数有最大值,
而n∈N* , 所以,当n=14或15时,Sn最大,最大值为210
【解析】(Ⅰ)设出等差数列的首项和公差,由已知条件列方程组求出首项和公差,然后直接代入等差数列的通项公式求解;(Ⅱ)把(Ⅰ)中求出的首项和公差直接代入等差数列的前n项和公式求解;(Ⅲ)利用二次函数的性质求前n项和的最大值.
【考点精析】掌握等差数列的通项公式(及其变式)和等差数列的前n项和公式是解答本题的根本,需要知道通项公式:或;前n项和公式:.
练习册系列答案
相关题目
【题目】随着生活水平的提高,人们对空气质量的要求越来越高,某机构为了解公众对“车辆限行”的态度,随机抽查人,并将调查情况进行整理后制成下表:
年龄(岁) | |||||
频数 | |||||
赞成人数 |
(1)完成被调查人员年龄的频率分布直方图,并求被调査人员中持赞成态度人员的平均年龄约为多少岁?
(2)若从年龄在的被调查人员中各随机选取人进行调查.请写出所有的基本亊件,并求选取人中恰有人持不赞成态度的概率.